
1. Motivation

The main goal of this talk was to give an introduction to the geometry of affine flag
varieties and affine Grassmannians. I realized that some motivation for considering
these objects is needed. So the first half of the talk will be the motivation for the second
half. First half should be rather easy to understand and the second half will be more
complicated and fast. In the first half we talk about representations of GLn(Fq) and
discuss (finite) Hecke algebras as convolution algebras. Second part discusses the same
picture but in the affine setting. First part of the talk partly follows [Lo, Lecture 8].

We start from the following question. Pick a finite field Fq, number n ∈ Z>1 and
consider the group GLn(Fq) of n × n invertible matrices with coefficients from Fq.
Group Γ := GLn(Fq) is finite. It then follows from the general theory that every finite
dimensional representation of Γ over C is the direct sum of irreducible representations
and irreducible representations are parametrized by conjugacy classes in Γ. The nat-
ural question is the following: explicitly construct an identification between conjugacy
classes of Γ and irreducible representations of Γ i.e. starting from a conjugacy class of
Γ to construct explicitly some irreducible representation of Γ.

Remark 1.1. Recall that for example for symmetric groups Sn such a construction exists.
Conjugacy classes are parametrized by partitions of n. The corresponding modules are
called Specht modules. There is a classical approach to construct such modules and also
there is a very nice approach due to Okounkov-Vershik see [OV], [OV2].

In this talk we only consider conjugacy classes of unipotent elements of GLn(Fq)
(recall that an element g is unipotent if (g − 1)N = 0 for large enough N). There is
a bijection between conjugacy classes of unipotent elements and partitions of n. This
follows from the following form the Jordan normal form theorem.

Proposition 1.2. For any field F the operator x ∈ Matn×n(F) can be written in the
Jordan normal form iff every eigenvalue of x (considered as an element of the algebraic
closure F) lies in F.

Proof. Same proof as the one of the Jordan normal form theorem over C. �

So we are considering only unipotent conjugacy classes. They should correspond to
a certain subset of the set of irreducible representations of Γ. This subset consists of
the representations V of Γ such that V B 6= ∅, here D ⊂ GLn(Fq) is the subgroup of
upper-triangular matrices (this is not an obvious statement, this section will be devoted
to the explanation of this fact).

Remark 1.3. Note that the condition that V D 6= ∅ has to do with the representation
theory of the Lie group G = GLn(C) over complex numbers (vector of V D is highest
weight of weight zero). Note that for G = GLn(C) the only irreducible finite dimensional
representation V such that V D 6= ∅ is the trivial representation.

Let us now classify the representations V such that V D 6= ∅. Let us first of all note
that since D is a finite group its representations over C are completely reducible and
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this implies the equality (V ∗)D ∼−→ (V D)∗. Recall also that

C[Γ] '
⊕

V -irreducible

V ⊗ V ∗ (1.1)

and this is an isomorphism of Γ×Γ-modules, here C[Γ] is the C-vector space of functions
Γ → C. The action of Γ × Γ on the LHS is given by ((g1, g2) · f)(g) = f(g−1

1 gg2) and
the action of Γ× Γ on the RHS is just via (g1, g2) · (v ⊗ v∨) = g1v ⊗ g2v

∨.

Remark 1.4. Recall that the isomorphism (1.1) can be constructed as follows: an ele-
ment v ⊗ v∨ ∈ V ⊗ V ∗ maps to the function g 7→ 〈v, gv∨〉.

We can now consider the space of functions on Γ that are invariant with respect to
D acting via right multiplications. This space is nothing else but C[Γ/D]. From (1.1)
we conclude that

C[Γ/D] =
⊕

V -irreducible

V ⊗ (V D)∗

so using Schur lemma we obtain

EndΓ(C[Γ/D]) =
⊕

V -irreducible Γ-module, V D 6=∅

EndC((V D)∗).

We conclude that there is a bijection between irreducible representations of the
(semisimple) algebra Hq := EndΓ(C[Γ/D]) and the irreducible representations V of Γ
such that V D 6= ∅. Moreover this bijection is explicit. Starting from an irreducible
representation E of Hq we construct the corresponding representation of Γ as follows.
Note that we have the natural action Hq y C[Γ/D] then

V = HomHq(C[Γ/D], E),

an action of Γ on V is induced from the action of Γ on Γ/D via left multiplication.
So our problem reduces to the classification of irreducible representations of the

algebra Hq = EndΓ(C[Γ/D]). To do this we need to understand the structure of the
algebra Hq. Let’s try to describe this algebra via generators and relations. To do so
we first study the set Γ/D in more details.

Set G := GLn, W := Sn and let B ⊂ G be the subgroup of upper-triangular matrices.
We also denote by U ⊂ B the subgroup of strictly upper-triangular matrices and by
T ⊂ B the subgroup of diagonal matrices. Note that B = T n U . Note also that
Γ = G(Fq), D = B(Fq).
Remark 1.5. More generally G is any reductive algebraic group, B is a Borel subgroup
of G and W is the Weyl group of G.

Set B := G/B. This is a (projective) algebraic variety of dimension n(n−1)
2 . Note

that Γ/H is nothing else but the set B(Fq) (see Remark 1.13). The variety B is called
the flag variety of G because of the following proposition.

Proposition 1.6. The variety B identifies with the space of flags:

B ∼−→{0 = F0 ⊂ F1 ⊂ . . . ⊂ Fn−1 ⊂ Fn = Cn | dimFi = i}.
The identification sends [g] ∈ G/B to the flag 0 ⊂ g(〈e1〉) ⊂ . . . g(〈e1, . . . , en−1〉) ⊂ Cn,
where {e1, . . . , en} is the standard basis of Cn.



3

Proof. Exercise. �

The following fact is standard and is known as Gauss decomposition.

Proposition 1.7. We have

G =
⊔
w∈W

BwB

Example 1.8. For G = GL2 we have W = S2 = {1, (12)} then we have

G = B tB(12)B,

where B(12)B consists of matrices

(
a b
c d

)
such that c 6= 0. Indeed for c 6= 0 we have(

a b
c d

)
=

(
1 a

c
0 1

)(
0 1
1 0

)(
c d

0 b− ad
c

)
As a corollary we obtain the following decomposition

B =
⊔
w∈W

BwB/B =
⊔
w∈W

UwB/B (1.2)

that is known as Bruhat decomposition. We set Bw := BwB/B.

Remark 1.9. Note that the subset {wB/B |w ∈W} ⊂ B is nothing else but the set BT

of T -fixed points (interpretation of B as the variety of flags helps to prove this) and each
Bw = UwB/B is nothing else but the attractor to wB/B with respect the C×-action
on B via any cocharacter C× → T given by t 7→ diag(tk1 , . . . , tkn) with k1 > . . . > kn.
So for the one who is familiar the Bruhat decomposition (1.2) can be considered as an
example of Bialynicki-Birula decomposition (see [Bia]).

Recall now that to every permutation w ∈ Sn we can associate its length l(w) that is
equal to the number of disorders in w (i.e. pairs 1 6 i < j 6 n such that w(i) > w(j)).

Proposition 1.10. We have Bw ' Al(w) i.e. each Bw is a cell and the length function
l : W → Z>0 has a geometric meaning as dimension of cells.

Proof. Recall that Bw = U · wB/B. Consider the subgroup Uw of U generated by
matrices (aij) such that aij = 0 for i < j such that w(i) < w(j). We claim that the

action of Uw on Bw is free and transitive i.e. we have an isomorphism Uw ∼−→Bw. To
check that the action on w induces the isomorphism we can do the following. Pick a
subgroup Uw ⊂ U consisting of (aij) such that aij = 0 for i < j such that w(i) > w(j).
We then claim that the multiplication map Uw × Uw → U is the isomorphism. This
follows easily from the Propoaition 4.1. Now we conclude that the action of Uw on
Bw is transitive. It follows that Bw is a quotient of Uw by some subgroup of Uw.
This subgroup is finite since the morphism Uw → Bw is an isomorphism at the level

of tangent spaces T1U
w ∼−→TwB/BBw. It follows that Bw is a quotient of Uw by a

finite group, hence is affine. It remains to note that the morphism Uw → Bw is C×-
equivariant with respect to the contracting C×-actions. Proposition 4.1 finishes the
proof. �
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Let us now return to the algebra Hq = EndΓ(C[Γ/D]). Recall that the group D is
finite so the functors of taking invariants •D and coinvariants • ⊗CH C are isomorphic
(here CH is the group algebra of H). We conclude that C[Γ/D] = C[Γ]D ' C[Γ]⊗CHC.
By the Frobenius reciprocity we have

HomΓ(C[Γ/D],−) ' HomD(C,−).

It follows that HomΓ(C[Γ/D],C[Γ/D]) = HomD(C,C[Γ/D]) = C[Γ/D]D.
We are now ready to compute the dimension of Hq.
Gauss decomposition is still valid for Γ = G(Fq), D = B(Fq) and gives us

Γ =
⊔
w∈W

DwD, Γ/D =
⊔
w∈W

DwD/D

so we conclude that dimHq = |W | = |Sn| = n!. To describe the algebra structure on
Hq we will identify it with another algebra.

Definition 1.11. Let H′q := C[D\Γ/D] = C[B(Fq)]D. We define the algebra structure
on H′q using the so-called convolution product as follows:

(f1 ∗ f2)(g) =
1

|B(Fq)|
∑

g1g2=g

f1(g1)f2(g2).

Question to the audience: who is the identity in H′q?

Remark 1.12. Let δ1 be the function that is equal to 1 on B1(Fq) and is zero otherwise
i.e. δ1 is the characteristic function of B1(Fq), δ1 = χB1(Fq). Then for every D-
invariant function f on B(Fq) we have

f ∗ δ1(g) =
1

|D|
∑
b∈D

f(gb−1)δ1(b) = f(g)

and similarly

δ1 ∗ f(g) =
1

|D|
∑
b∈D

δ1(b)f(b−1g) = f(g).

So δ1 ∈ H′q is the identity element.

So we obtain some algebra H′q. Note that dimH′q = n! = dimHq and moreover
we have a natural basis of H′q consisting of characteristic functions Tw = χBw(Fq) of
D-orbits.

Remark 1.13. Note that identifying the realization of H′q as C[B(Fq)\GLn(Fq)/B(Fq)]
with its realization as C[B(Fq)]B(Fq) we implicitly use the equality B(Fq) =
G(Fq)/B(Fq). This can be shown using Gauss and Bruhat decompositions of G(Fq),
B(Fq), more conceptual way to prove this is the following. Note that we have an exact
sequence

0→ B(Fq)→ G(Fq)→ B(Fq)→ H1(Gal(Fq/Fq), B(Fq)),
where H1(Gal(Fq/Fq), B(Fq)) is the first Galois cohomology of the group B(Fq). So

our goal is to show that H1(Gal(Fq/Fq), B(Fq)) = 0. Note now that B can be filtered
by normal subgroups with successive quotients being either Ga or Gm and then the
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claim follows from the Hilbert 90 theorem (which implies that H1(Gal(Fq/Fq),F
×
q ) = 0)

together the fact that H1(Gal(Fq/Fq),Fq) = 0 (that is true since Fq is perfect).

Proposition 1.14. There is an isomorphism of algebras

H′q
∼−→Hq given by f 7→ f ∗ −.

Proof. We give an idea. The map is well-defined since f ∗ − : C[Γ/D] → C[Γ/D] is
Γ-equivariant by the definitions (easy computation, left as an exercise). Algebras have
equal dimensions. The map is injective since the image of f sends δ1 ∈ C[B(Fq)] to
f ∗ δ1 = f . Claim follows. �

Let us now describe the multiplication on Hq in the basis of characteristic functions
of B(Fq)-orbits that we denote by χw = Tw.

Proposition 1.15. We have

Tw1Tw2 = Tw1w2 if l(w1w2) = l(w1) + l(w2),

T 2
(i,i+1) = q + (q − 1)T(i,i+1), i = 1, . . . , n− 1.

Proof. The idea is the following. Pick w, v ∈W and let us write

TwTv =
∑
u

mu
w,vTu

with mu
w,v ∈ C. Our goal is to compute the numbers mu

w,v. Note that mu
w,v is nothing

else but (χw ∗χv)(u) = 1
|D|
∑

g1∈DwD, g2∈DvD, g1g2=u 1. This can be rewritten as follows:

g1 ∈ DwD and g1 = ug−1
2 ∈ uDv−1D so the sum above is equal to |DwD∩uDv

−1D|
|D| i.e.

is equal to the number of elements in Bw(Fq) ∩ uBv−1(Fq) i.e.

TwTv =
∑
u

|Bw(Fq) ∩ uBv−1(Fq)|Tu.

We can also assume that v = s = (i, i + 1). Note that Bs = P1. Computation of
|Bw(Fq) ∩ uBs(Fq)| is an exercise on the geometry of flag varieties. �

Example 1.16. Consider the example G = GL2. Then the only interesting computa-
tion is T 2

(12). We have

T 2
(12) = |B(12)(Fq)|+ |B(12)(Fq) ∩ (12)B(12)(Fq)|T(12).

Recall now that by Proposition 1.10 we have B(12) = A1 so |B(12)(Fq)| = q. It remains
to compute the number of points in B(12)(Fq) ∩ (12)B(12)(Fq). The variety B is iso-

morphic to P1, B(12) = P1 \B1 is P1 \ {0} and (12)B(12) = P1 \ (12)B1 is P1 \ {∞}.
So we conclude that the intersection B(12) ∩ (12)B(12) is P1 \ {0,∞} that has q − 1
Fq-points. We conclude that

T 2
(12) = q + (q − 1)T(12)

as desired.
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The isomorphism CS2
∼−→Hq is given by

1 7→ 1, (12) 7→
T(12)√
1 + q2

+
1− q

2
√

1 + q2
,

it is well-defined iff q2 6= −1.

Remark 1.17. Note that the relation T 2
s = q+(q−1)Ts can be rewritten as (Ts+1)(Ts−

q) = 0.

It is now easy to see that the relations from Proposition 1.15 determine the multipli-
cation in algebra H′q = Hq uniquely and that this algebra is generated by the elements
T(i,i+1), i = 1, . . . , n − 1. Now we can forget that q was a power of a prime and note
that we obtain a new interesting algebra Hq for every q ∈ C. This algebra is called a
Hecke algebra corresponding to W . Note that for q = 1 we have H1 = CSn. Moreover
if q is not a root of unity then the algebra Hq is noncanonically isomorphic to the group
algebra CSn. In general Hq can be considered as a flat deformation of the algebra CSn.
In the same spirit as the classical story about Sn one can construct explicitly Specht
modules for the algebra Hq. Note that the number of irreducible representations of
Hq is the same as the number of partitions of n that is in bijection with unipotent
conjugacy classes in Γ = GLn(Fq). This finishes our task of explicit construction of
irreducible representations of GLn(Fq) corresponding to unipotent conjugacy classes.
They are given by

VA := HomHq(C[GLn(Fq)/B(Fq)], SA),

here SA is the Specht module corresponding to the partition A of n.
The Hecke algebra Hq that we have just constructed is a very important algebra in

representation theory. Recall now that W = Sn is the Weyl group of G = SLn or the
Weyl group of sln. We just realized that the Hecke algebra of W can be constructed
using the geometry of the flag variety B.

Remark 1.18. Note that the flag variety B of GLn coincides with the one of SLn and
also with the one for PGLn.

The natural question is the following: what is the affine analog of this picture?

By affine analog I mean the following. Note that Sn is the Weyl group of the Lie algebra
g = sln, we can now consider the affine Lie algebra ŝln defined as follows:

ŝln := sln((z))⊕ CK

with the commutator given by

[x⊗ zk, y ⊗ zl] = [x, y]⊗ zk+l + kδk+l,0 tr(xy)K, [K, ĝ] = 0.

One can associate to ŝln its Weyl group Ŵ . The group Ŵ can be described as follows.
Set Λ := Zn/{(k, . . . , k), k ∈ Z}. Let Q ⊂ Λ be the subgroup of Λ generated by the
elements (k1, . . . , kn) with k1 + . . .+ kn = 0.
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Remark 1.19. It is an exercise to show that [Λ : Q] = n. The representatives of Λ/Q
are classes of the elements (1, . . . , 1, 0, . . . , 0). Actually Q is the root lattice of sln and
Λ is the weight lattice of sln.

It is not hard to show that Ŵ = Sn nQ and Ŵ is generated by the reflections

si = ((i, i+ 1), 0), i = 1, . . . , n− 1, s0 = ((1, n), (1, 0, . . . , 0,−1)).

Remark 1.20. Recall that the multiplication in Sn nQ is given by (w1, λ1) · (w2, λ2) =
(w1w2, w

−1
2 (λ1) + λ2).

Remark 1.21. Group Ŵ is an example of the affine Coxeter group. It is generated by
reflections s0, . . . , sn−1, defining relations are the following. It is more elegant to write

them down using the identification {0, 1, . . . , n− 1} ∼−→Z/nZ, i 7→ i.
(1) s2

i
= 1.

(2) sisj = sjsi for j /∈ {i− 1, i, i+ 1}.
(3) sisi+1si = si+1sisi+1 for i ∈ Z/nZ.
Note that s0 and si, i = 1, . . . , n − 1 have different nature but it turns out that the

defining relations are cyclically symmetric. Note that the third relation is equivalent to
(sisi+1)3 = 1.

Note also that since Ŵ is a Coxeter group then we have a length function l : Ŵ → Z>0

that can be defined as follows: l(ŵ) is the number of reflections si that appear in a
reduced decomposition of ŵ. This function can be also (partly) described as follows:
l(w) is the number of disorders of w ∈ W , l(λ) = (2ρ, λ+) where λ+ ∈ Q is such that
λ+

1 > . . . > λ+
n (i.e. λ+ is dominant), here 2ρ = (n, n− 1, . . . , 1) and ( , ) corresponds

to the standard pairing on Q. Also l(w, λ) = l(w) + (2ρ, λ) for dominant λ ∈ Q.

We now want to define the algebra Hq(Ŵ ) that should be the affine Hecke algebra
(sometimes called the Iwahori-Hecke algebra or Iwahori-Matsumoto Hecke algebra) and

try to find some geometric object that place a role of B for Hq(Ŵ ).

2. Affine Grassmannian and affine flag variety

Here g = sln and G is the Lie group with Lie algebra g (so either SLn or PGLn),
sometimes we also denote GLn by G.

Remark 2.1. Everything that will be discussed in this talk can be generalized to arbitrary
reductive Lie algebra g and reductive algebraic group G with Lie algebra equal to g.

Our goal is to define a “flag variety” corresponding to ĝ. Since we passed from g
to ĝ = g((z)) ⊕ CK then the first idea is to pass from G to G(K), where K = C((z)).
Recall now that B was the quotient of G by B and now we replace G by G(K) and
want to replace B by some subgroup of G(K). I claim that we have a very natural
candidate for such a subgroup.

Question to the audience: suggestions for the correct analog of B in this setting?

Note that B ⊂ G is “the half” of G up to diagonal matrices. Let O ⊂ C((z)) be the
ring C[[z]]. Consider the subgroup G(O) ⊂ G(K). Note that G(O) is almost the half
of G(K) up to the fact that for “z = 0” the group “G(C[[z]])z=0” is the whole G. We
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want for z = 0 to get B so we do the following: let ev0 : G(O) → G be the evaluation
at zero homomorphism. Set

I := ev−1
0 (B) ⊂ G(K).

The group I is called the Iwahori subgroup of G(K).

Remark 2.2. Recall that B = T n U . Now U ⊂ G is the subgroup of G generated by
positive root subgroups. For affine Lie algebras we can also easily define the notion of
positive and negative roots and then the definition of I becomes transparent.

We can now define

FlG := G(K)/I, GrG := G(K)/G(O)

The space FlG is called the affine flag variety of G and GrG is the affine Grassmannian
of G.

Remark 2.3. The space FlG should be considered as an affine analog of B, the space
GrG does not have an interesting classical analog since its classical analog should be
just G/G = pt.

Our goal for now is to study the space FlG and to use its geometry to obtain the
affine Hecke algebra Hq(Ŵ ). We will also study the geometry of GrG and describe the
corresponding (spherical) Hecke algebra.

Let us first of all note that we have a surjective map FlG → GrG which fibers are
G(O)/I = G/B = B. So FlG can be considered as a fiber bundle over GrG with
fibers isomorphic to B. So we see that the geometry of FlG is the “combination” of
the geometries of GrG and B. We concentrate on the case G = GLn since the affine
Grassmanian and flags of SLn, PGLn can be easily extracted from the same varieties
for GLn (see Remark 2.5).

Our first goal is to understand the geometric structure of FlG,GrG. We concentrate
on GrG since FlG is just the fiber bundle over GrG. Let V be a vector space of
dimension n. The following proposition identifies GrGLn with the space of O-lattices in
V (K) := V ⊗C K (free rank n submodules).

Proposition 2.4. For G = GLn we have

GrGLn = {L ⊂ V (K) |L is a finitely generated O-submodule that generates V (K) over K}
The description of FlGLn is the following. We have

FlGLn = {(L,F•) |L is O-lattice in V (K), F• is a flag in L/zL}.
Equivalently we have

FlGLn = {L = L1 ⊃ L2 ⊃ . . . ⊃ Ln ⊃ zL |Li-lattices}
that can be considered as an infinite flag if we set zkLi := Lkn+i.

Proof. We prove the claim for GrG. Recall that GrGLn = GLn(K)/GLn(O). Note that
we have a lattice L0 := V (O) ⊂ V (K). I claim that every lattice L ⊂ V (K) can be
obtained as g(L0) for an appropriate g ∈ GLn(K). Indeed recall that L ⊂ V (K) is a
finitely generated O = C[[z]]-submodule of V (K) that must be free since C[[t]] is PID
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and V (K) has no torsion. Since dimK L⊗O K = n we conclude that L is a free rank n
O-module. We can then fix some generators v1, . . . , vn of L and consider g ∈ GLn(K)
that sends ei to vi.

Note now that an element g ∈ GLn(K) stabilizes L0 (i.e. g(L0) = L0) iff g ∈ GLn(O).
This finishes the proof of the first claim of the proposition. �

Remark 2.5. Let us describe GrSLn, GrPGLn via lattices. Recall that we have the “stan-
dard” lattice L0. For an arbitrary lattice we define the index [L : L0] as |L/(L∩L0)| −
|L0/(L ∩ L0)| (note that for L ⊃ L0 we have [L : L0] = |L/L0|). Then GrSLn consists
of lattices L such that [L : L0] = 0. The natural embedding GrSLn ⊂ GrGLn realizes
GrSLn as the connected component of L0 ∈ GrGLn. Note that GrGLn has Z connected
components, the connected component that corresponds to k ∈ Z consists of lattices
L such that [L : L0] = k, the basic example of such lattice is the one generated by
{zke1, e2, . . . , en} ∈ V (K). Actually more generally π0(GrG) = π1(G).

Let us now describe the affine Grassmannian GrPGLn. We have the natural surjection
GrGLn � GrPGLn. It identifies GrPGLn with the space of lattices L modulo the relation
L ∼ zL. Note now that to every such equivalence class L one can associate the index
[L : L0] that is a well-defined element of Z/nZ. We see that GrPGLn has n connected
components (compare with the fact that π1(PGLn) ' Z/nZ).

We are now ready to understand the structure of GrGLn . For N ∈ Z>1 set

GrNGLn = {L ∈ GrG | zNL0 ⊂ L ⊂ z−NL0}.

It is clear that GrG =
⋃
N GrNG . I claim that GrNG is a closed subvariety of the dis-

joint union Gr(•, 2nN) :=
⊔
k∈Z>0

Gr(k, 2nN). Indeed we have an embedding GrNG ↪→
Gr(•, 2nN) that sends L to L/zNL0. Moreover the image of this embedding consists
exactly of subspaces R ⊂ z−NL0/z

NL0 that are invariant with respect to the operator
z· : z−NL0/z

NL0 → z−NL0/z
NL0 that is indeed a closed condition.

So we see that GrG should be considered as an inductive limit of projective schemes
GrNG of finite type. Same holds for FlG. In other words GrG is an ind-scheme.

Being more careful we should consider GrG as a functor AlgC → Sets defined as
follows. By the definition we say that L ⊂ R((z))⊕n is a lattice if L is a finitely
generated projective R[[z]]-module such that L⊗R[[z]] R((z)) = R((z))⊕n. Then

GrGLn : AlgC → Sets, R 7→ {L ⊂ R((z))⊕n |L is a lattice}.
Then the functor GrGLn is represented by an ind-scheme.

Remark 2.6. One can show that the functors GrG, FlG are not represented by schemes
when G is nontrivial. Let us explain this for G = Ga i.e. G = A1 with the group
structure given by addition.

Using the realization of GrGa as Ga(K)/Ga(O) we see that GrGa(C) is
C((z))/C[[z]] = z−1C[z−1] =

⋃
k∈Z>0

SpanC(z−1, . . . , z−k) and more generally

GrGa(R) = R((z))/R[[z]] = z−1R[z−1] i.e. GrGa is the inductive limit lim
−→

Ak. So for a

C-algebra R we have GrGa(R) = lim
−→

Ak(R).

If GrGa is represented by a scheme then we can find U ⊂ GrGa an affine open
subscheme of GrGa. We have U = SpecR and the map U → GrGa corresponds to
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some element of GrGa(R) i.e. an element of some Ak(R) i.e. the image of U lies
in Ak ⊂ GrGa. It remains to note that the embedding Ak ⊂ GrGa is closed so the
composition U ⊂ Ak ⊂ GrGa can not be open.

We are now ready to formulate the analog of Bruhat decompositions for FlG, GrG.
Assume that G = SLn. Recall the subgroup T ⊂ SLn of diagonal matrices. Recall also
the lattice Q consisting of (k1, . . . , kn) ∈ Zn such that k1 + . . .+kn = 0. Let Q+ ⊂ Q be
the submonoid of Q consisting of elements (k1, . . . , kn) such that k1 > . . . > kn. To any
λ = (k1, . . . , kn) we can associate the following point of T (K): zλ := diag(zk1 , . . . , zkn).
We denote by the same symbol zλ the corresponding points of GrG, FlG.

The following proposition is a version of a Bruhat decomposition in the affine setting.

Proposition 2.7. We have

FlSLn =
⊔

(w,µ)∈Ŵ

Iwzµ, GrSLn =
⊔

λ∈Q+

SLn(O)zλ.

Variety Fl
(w,µ)
G := Iwzµ is isomorphic to Al(wzµ) (in particular finite dimensional),

where l : Ŵ → Z>0 is the length function. Variety GrλG := G(O)zλ is smooth of
dimension l(λ) = (2ρ, λ), here 2ρ = (n, n− 1, . . . , 2, 1).

Proof. We (partly) prove the claim for GrG. The claim for FlG can be deduced using the
B-fibration FlG → GrG. We also assume that G = GLn for simplicity (for G = GLn
group Ŵ should be replaced by Sn n Zn and Q+ by {(k1, . . . , kn) ∈ Zn} such that
k1 > . . . > kn).

Recall the lattice description of GrG. In terms of lattices points zλ correspond
to lattices generated by vectors zk1e1, . . . , z

knen ∈ V (K). Consider now any lattice
L ⊂ V (K). Let v1, . . . , vn be generators of L. We can assume that among {vi} v1 has
the greatest pole at zero say equal to k ∈ Z. Reordering {ei} we can write v1 = zkv′

with v′ =
∑

i aiei, ai ∈ C[[z]], a1 ∈ C[[z]]×. Using the element of GLn(O) that sends e1

to a−1
1 e1 and ei to ei for i > 1 we can then assume that v1 = zk(e1 +

∑
i>1 aiei). Then

we can apply the authomorphism that sends v′ = e1 +
∑

i>1 aiei to e1 and ei to ei for

i > 1 and conclude that v1 becomes zke1. After that we can change our basis elements
v2, . . . , vn GLn(O) of L and delete e1 from the decompositions of vi, i > 1 (use that zke1

lies in the new lattice). We then conclude that v1 = zke1 and vi ∈ SpanC(e2, . . . , en)⊗C
K. We repeat the procedure for the lattice in SpanC(e2, . . . , en) ⊗C K generated by
v2, . . . , vn. �

Remark 2.8. We see that GrG = lim
−→

GrλG, FlG = lim
−→

FlŵG i.e. again see that GrG, FlG

are ind-schemes of ind-finite type.

Now we are ready to return to our Hecke algebras. Note that the I-orbits on FlG
are in bijection with Ŵ . This is a good sign. Recall that in the finite case in order to
construct Hq(W ) we considered the set SLn(Fq)/B(Fq) = B(Fq).

Question to the audience: which set should we consider in the affine setting?

It is natural then to consider the vector space generated by characteristic
functions of I(Fq)-orbits on FlSLn(Fq) or more symmetrically the vector space
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C[I(Fq)\ SLn(Fq((z)))/I(Fq)] generated by characteristic functions of double
cosets of I(Fq) acting on SLn(Fq). We can similarly define the vector space
C[SLn(Fq[[z]])\ SLn(Fq((z)))/ SLn(Fq[[z]])].

We want to define the convolution product on these vector spaces. Note that
|I(Fq)| = ∞ so we can not divide by it in the definition (as we did in the case of
B).

On the other hand recall that for B we had

χw ∗ χv =
∑
u∈W
|Bw(Fq) ∩ uBv−1(Fq)|χu

and we do not divide by anything here. Note that this definition works perfectly well in
our setting since FlŵSLn , GrλSLn (that are analogs of Bw) are finite type schemes, hence,
the sets of their Fq-points are finite. So we define the convolution product for FlSLn as
follows:

χŵ ∗ χv̂ =
∑
û∈Ŵ

|Flŵ(Fq) ∩ ûFlv̂
−1

(Fq)|χû.

Note that the sum is finite since if the intersection Flŵ(Fq)∩ ûFlv̂
−1

(Fq) is nonempty
then I(Fq)ŵI(Fq) ∩ ûI(Fq)v̂−1I(Fq) 6= ∅ and so û ∈ I(Fq)ŵI(Fq)v̂I(Fq) and there is
only finite number of such û (actually every such û must be 6 then ŵv̂ with respect to

the Bruhat order on Ŵ ).

Remark 2.9. We are implicitly using that FlG(Fq) = G(Fq((z)))/I(Fq), recall that I(Fq)
is the preimage of B(Fq) under the evaluation at zero homomorphism G(Fq[[z]]) →
G(Fq). The equality FlG(Fq) = G(Fq((z)))/I(Fq) can be shown using Bruhat decompo-
sitions of G(Fq((z))), FlG(Fq).

Proposition 2.10. The algebra

(C[I(Fq)\ SLn(Fq((z)))/I(Fq)], ∗)
is generated as a vector space over C by elements Tŵ = χFlŵSLn

, ŵ ∈ Sn nQ subject to

the following relations:

Tŵ1Tŵ2 = Tŵ1ŵ2 if l(ŵ1ŵ2) = l(ŵ1) + l(ŵ2), ŵ1, ŵ2 ∈ Ŵ
T 2
si

= q + (q − 1)Tsi , i ∈ Z/nZ.
We have

C[SLn(Fq[[z]])\ SLn(Fq((z)))/ SLn(Fq[[z]])] ' (CQ)W .

Proof. The first part of the theorem is due to Iwahori and Matsumoto (see the original
reference [IM] and also the expository paper [HKP]) and can be proved similarly to
the finite case (the proof is rather easy when understand the geometry of FlSLn). The
second claim is due to Satake (this is so-called Satacke isomorphism). This claim can be
considered as a first step towards the formulation of the so-called Langlands conjectures.

�

Remark 2.11. The algebra CQ has two natural bases. One is {
∑

w∈W w(λ), |λ ∈ Q+},
the second one is the basis of characters of irreducible representations Vλ of PGLn.
Satake isomorphism gives us the third basis in C[Q]W - the one corresponding to the
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characteristic functions of SLn(Fq[[z]])-double cosets. All these three bases are distinct.
The matrix coefficients relating third basis with the second one have to do with Kazhdan-
Lusztig polynomials for Ŵ .

Remark 2.12. Let us give the formulation of Satake isomorphism for PGLn. Recall
that Λ = Zn/{(k, . . . , k) | k ∈ Z}. We denote by Λ+ ⊂ Λ the submonoid consisting
of [k1, . . . , kn] such that k1 > . . . > kn. Note that Λ+ is generated by n − 1 elements
ω1, . . . , ωn−1, ωi = (1, . . . , 1︸ ︷︷ ︸

i

, 0, . . . , 0) (that is not true for Q+ ⊂ Λ+). Then we have

C[SLn(Fq[[z]])\ SLn(Fq((z)))/ SLn(Fq[[z]])] ' (CΛ)W

and the algebra above is commutative and freely generated by the characteristic functions
χGr

ωi
PGLn

(Fq).

Remark 2.13. Note that Fq((z)) is an example of a non-Archimedean local field with
Fq[[z]] being its valuation ring. We may replace Fq((z)) by any non-Archimedean local
field K and Fq[[z]] by its valuation ring O ⊂ K and the statement of Proposition 2.10
will still hold.

Let us now take a look at the Satake isomorphism of Proposition 2.10. Note that
the RHS of this isomorphism identifies canonically with the algebra K0(Repf.d PGLn),
here Repf.d PGLn is the category of finite dimensional representations of PGLn over
complex numbers and K0 corresponds to taking K-theory of this category. The algebra
structure on K0(Repf.d PGLn) is given via tensor product operation. The isomorphism

K0(Repf.d PGLn) ∼−→C[Q]W sends a class of a representation P to its character chP .
We see that the RHS of the Satake isomorphism can be “categorified” to the cat-

egory Repf.d PGLn. Note that the LHS also has a categorification that is the cat-
egory PerSLn(O) GrSLn of perverse SLn(O)-equivariant sheaves on GrSLn . Category
PerSLn(O) GrSLn has a tensor structure ∗ given by the “categorified” version of convolu-
tion product. The following proposition is the so-called geometric Satake isomorphism.
This is due to Beilinson-Drinfeld-Ginzburg-Lusztig-Mirković-Vylonen.

Proposition 2.14. There exists an equivalence of tensor categories

(PerSLn(O) GrSLn , ∗) ' Repf.d PGLn .

Proof. See [MV]. �

Remark 2.15. This proposition can be considered as a first step towards the formulation
of the so-called geometric Langlands conjectures. Note that the LHS of this isomorphism
is some category depending on SLn but the RHS depends on PGLn. The groups SLn,
PGLn are so-called Langlands dual groups.

Remark 2.16. Some categorification of the first statement of Proposition 2.10 is also
known. See [AB].

3. Affine Grassmannian and flags as moduli spaces of bundles

This section should be covered only if time permits.
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Recall that GrG = G(K)/G(O), FlG = G(K)/I. Set D := SpecO, D̊ := SpecK. One

can consider D as a formal neighbourhood of the point 0 ∈ A1 and D̊ can be considered
as a punctured formal neighbourhood of 0.

Proposition 3.1. Space GrG is the moduli space of pairs (ED, σD̊) where E is a prin-

cipal G-bundle on D and σD̊ : Etriv
D̊

∼−→ED̊ is a trivialization of ED restricted to D̊.

Space FlGLn is the moduli space (ED, σD̊, F ), where (ED, σD̊) are the data as above
and F is a B-subtorsor in the fiber E0. For G = GLn this is the same as the space of
triples (ED, σD̊, F•) with ED being rank n vector bundle on D, σD̊ its trivialization on

D̊ and F• a flag in the fiber E0.

Proof. We only prove the first claim. The second claim is an exercise. We also assume
that G = GLn. Recall that O is a PID so every vector bundle on D is trivial. Let us

now fix a trivialization σD : Etriv
D

∼−→ED of our vector bundle ED. Then after restricting

it to D̊ it together with σD̊ gives us an element of GLn(K). Forgetting the choice of

σD corresponds to considering g modulo AutEtriv
D = GLn(O). �

One also has a “global” description of GrG Let now C be any smooth curve over C
and pick a point x ∈ C and set C̊ := C \ {x}.

Proposition 3.2. Space GrG is the moduli space of pairs (EC , σC̊) where EC is a

principal G-bundle on C and σC̊ is a trivialization of EC restricted to C̊.

Proof. We give the idea of the proof, for the details see for example [G]. Starting
from a pair (EC , σC̊) we can just restrict it to D to obtain the desired point of GrG.
In the opposite direction we start from the pair (EC , σC̊). Consider now the covering

D t C̊ � C. This is a fully faithfull morphism. It then follows from the faithfully flat
descent (see for example [Stack, Section 58.16]) that we can glue bundle ED with the

trivial bundle EC̊ via the trivialization σD̊ (note that D̊ = D ×C C̊) and obtain the
bundle EC on the curve C with the canonical trivialization σC̊ . �

Corollary 3.3. We have GrG(C) = G[z±1]/G[z].

Proof. Take C = P1 and x = 0 ∈ P1. Then GrG is the moduli space of pairs
(EP1 , σP1\{0}). We assume that G = GLn. Then (EP1)|A1 must be trivial (since C[A1] is
a PID). We can fix any trivialization σA1 of (EP1)|A1 and together with σP1\{0} obtain

the gluing function g ∈ G[z±1] that determines EP1 uniquely. Forgetting the choice of
σA1 corresponds to considering g modulo Aut(Etriv

A1 ) = G[z]. �

Another feature that appears in this infinite-dimensional setting is that there are
interesting orbits that are opposite to G(O)-orbits. Note that in finite case orbits of B
and B− (lower triangular matrices) are isomorphic (conjugate by the longest element
of the Weyl group for Sn given by i 7→ n + 1 − i). In the affine situation the analog
of B− is the group I− ⊂ G[z−1] of matrices which value at infinity lies in B− and we
have G[z−1] for G(O). Note that G[z−1] is not isomorphic to G(O). Note for example
that G(O) is represented by a scheme that is pro-finite type but G[z−1] is and ind-
scheme of ind-finite type. So another interesting thing is the decomposition of GrG
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into G[z−1]-orbits. This decomposition is closely related to the description of GrG via
bundles.

Proposition 3.4. We have

GrG =
⊔
λ∈Λ+

G[z−1] · zλ

Proof. We assume that G = GLn. Recall that GrG = G[z±1]/G[z]. Our goal is to
parametrize G[z−1]\G[z±1]/G[z]. I claim that this set is in bijection with the set
of isomorphism classes of rank n vector bundles on P1. Indeed vector bundle E on
P1 should be trivial being restricted to P1 \ {0}, P1 \ {∞} so is determined by its
gluing function that is the element of GLn(P1 \ {0,∞}) = GLn[z±1]. Moreover two
gluing functions define the same vector bundle iff they lie in the same double coset of
G[z−1]×G[z].

It remains to note that by the Grothendieck theorem (one proof is via cohomological)
every vector bundle on P1 is isomorphic to the direct sum O(λ1)⊕. . .⊕O(λn). Moreover
assuming that λ1 > λ2 > . . . > λn we see. �

Remark 3.5. Let us add here couple remarks about the geometry of GrG. Ind-scheme
GrG is formally smooth but can not be presented as an inductive limit of smooth schemes
of finite type. Ind-scheme GrG is reduced iff G is reductive.

4. Appendix

We are using the following proposition (proof is an exercise).

Proposition 4.1. Let f : X → Y be a C×-equivariant morphism of smooth affine
varieties equipped with an action of C×. Assume that the C×-actions contract X to
the unique fixed point x ∈ X and contract Y to the C×-fixed point y ∈ Y . Assume

also that f induces the isomorphism TxX
∼−→TyY . Then f is an isomorphism.
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